Химический состав чугуна

Химический состав чугуна является очень важным фактором, обусловливающим механические свойства отливок. При этом механизм влияния элементов определяется, главным образом, изменением условий первичной и вторичном кристализации. Изменение же химического чугуна имеет меньшее значение, хотя легирование феррата повышает его прочность. Поэтому одним легированием твердого раствора, без соответственного изменения структуры чугуна, нельзя достичь значительного изменения прочности. По этой причине обычно и не применяется в качестве конструкционного материала легированный ферритный чугун, например ковкий.

Изменением химического состава других структурных составляющих (карбидов, графита, сульфидов, нитридов и т, д.) можно пренебречь с точки зрения механических свойств чугуна, так как действие подобных включений обусловливается только блокированием плоскостей скольжения, сужением сеченля и созданием надрезов. Поэтому главная роль величина, форма и распределение, а нехимический состав чугуна  состав и механических свойств этих структурных составляющих.

Таким образом, основное влияние легирующих элементов на механический свойств определяется изменениями в условиях первичной и вторичной кристаллизации чугуна (количество, форма и распределение величина зерна, характер основной металлической массы), которые обусловливают химическим составом металла. Химический состав чугуна при изменении имеет подчиненное значение (вследствие высокого содержание в нем углерода), которым однако не всегда можно пренебречь.

а) Влияние углерода и кремния. С повышением содержания углерода и кремния увеличивается степень графитизации.

Влияние углерода на механические свойства чугуна

Рис.151. Влияние углерода на механические свойства и химический состав чугуна.

Весь химический состав чугуна и его механические свойства (рис. 151) составляют только циклическая вязкость и повышается количество графита и укрупняются его выделения, т. е. изменяются как структура основной металлической массы, так и количество формы графита в чугуне. Такое изменение структуры чугуна, как показывают исследования, сильно понижает. Исключение до некоторой степени пропита, возрастающие с повышением содержания углерода и кремния.

Особо большое влияние на механические свойства имеет содержание углерода. При этом в малоуглеродистом чугуне (2,75 - 3,0%), в противоположность высокоуглеродистому (3,3 - 3,5% С) механические свойства сначала повышаются с увеличенном содержания кремния до известного предела, а затем понижаются. Это объясняется наличием структурно-свободных карбидов или междендритного графита в чугуне, что понижает его механические свойства. Увеличение содержания кремния в этом случае, способствуя графитизации или устранению междендритного графита, повышает механические свойства чугуна. По этой же причине уменьшение содержания углерода тоже имеет целесообразный предел, ниже которого прочность чугуна понижается вследствие междендритной кристаллизации графита.

Так как общая закономерность зависимости структуры чугуна от содержания углерода и кремния выражается структурной диаграммы), то она естественно в состоянии отобразить и соответствующие изменения механических свойств чугуна, как это видно из приведенных и литературе данных. Максимальная прочность чугуна соответствует положению его в средней части перлитной области структурной диаграммы. И верхней ее части прочность понижается вследствие повышения степени эвтектичности увеличения количества углерода и графита: в нижией части - вследствие междендритной кристаллизации графита. В обычных условиях практики химические составы чугуна располагаются в верхней части перлитной области, поэтому, чем больше углеродный эквивалент (Са = С + 0,3 Si), тем ближе находится чугун по своему химическому  составу к эвтектическому, тем крупнее выделения графита и тем ниже прочность чугуна.

Влияние кремния на механические свойства чугуга при разном содержании углерода

Рис. 152. Влияние кремния на механические свойства чугуна при разном содержании углерода.

Вместе с тем при этом наблюдается увеличение пластических деформаций: стрели прогиба и до известной степени - ударной вязкости чугуна. Вместе с тем пластические деформации степени - ударная вязкость чугуна.

При замене углерода кремнием так, чтобы структура основной металлической массы не изменилась, т. е. при сохранении условий: С Si const или С + nSi = const, углеродный эквивалент (С1 = С + 0,3Si) понижается. Поэтому понижение содержания углерода в чугуне при соответствуюшем повышении содержания кремния приводит не только к уменьшению количества графита при сохранении структуры основной массы чугуна, но и в размельчении графита вследствии понижения.

Зависимость прочности чугуна от его положения на структурной диаграмме

Рис. 153. Зависимость прочности чугуна от его положения на структурной диаграмме.

Следовательно, углерод и кремний нельзя считать равноценными в отношении их влияния на механические свойства чугуна и замена (до известного предела) углерода кремнием имеет своим следствием механические свойства в особенности в перлитном чугуне.

При повышении содержания кремния сверх 3% твердости чугуна начинает повышаться вследствии уменьшения количества графита и увеличения концентрации кремния в феррите, хотя прочность и пластичность при этом продолжают падать:

Таблица

Для оценки чугуна, как конструкционного материала, имеет большое значение однородность его свойств в разных частях отливки. Металл с низкой однородностью может дать высокую прочность в тонких частях отливки и низкую - в толстых. Наоборот, металл с высокой однородностью в состоянии обеспечить высокую прочность во всех частях отливки и,следовательно, во всей детали в целом. Зависимость механических свойств от толшипы стопок отливки выражается показательной функцией:

оD/оD0 = (D/D0)-d (123)

оD - соответствующее свойство бруска диаметром D; oD0 -  соответствующее свойство бруска диаметром D0; d - коэффициент однородности.

Зависимость механических свойств чугуна от величины углеродного эквивалента

Рис. 154. Зависимость механических свойств чугуна от величины углеродного эквивалента.

Чем больше абсолютное значение коэффциента однородности, тем больше неоднородность в свойствах различных частей отливки. Исследования показывают, что с увеличением содержания углерода и кремния абсолютное значение коэффициента однородности повышается, а именно:

а = 0,24 + 0,285 (С + 0,8 Si) - 4,2 (124)

Таким образом, с уменьшением содержания углерода и кремния механические свойства чугуна не только повышаются, но и выравниваются в разных частях отливки, охлаждающихся с равной скоростью, причем углерод и этом отношении сильнее кремния.

Уменьшение содержания углерода в ковком чугуне имеет еще большее значение для повышения механических свойств чем в сером чугуне. Как видно из рис. 140 и 144 параллельно с увеличением прочности повышается также и удлинение. Это объясняется уменьшением количества и улучшением формы углерода отжига при одной и той же структуре (ферритной) основной металлической массы.

О влиянии кремния на механические свойства ковкого чугуна существуют противоречия. Однако можно утверждать, что это влияние невелико, хотя все же отрицательно даже в том случае, когда повышение содержания кремния еще не вызывает выделения графита в сырых отливках. Поэтому повышение механических свойств  чугуна чаше всего достигается за счет понижения содержания углерода, несмотря на то, что для сокращения времени отжига при этом увеличивают содержание кремния. Однако следует иметь в виду ухудшение литейных свойств чугуна с понижением содержания в нем углерода.

б) Влияние марганца и серы. Влияние марганца и серы на механические свойства чугуна определяется в основном соответствующим изменением структуры основной металлической массы (степень графитизации, дисперсность перлита), а также с изменением нормы графита и образованием включении сульсеидов.

Влияние марганца на механические свойства чугуна

Рис.155.Влияние марганца на механические свойства чугуна.

Это влияние сравнительно невелико и зависит от состава чугуна, вследствие чего литературные данные но этому вопросу часто противоречны. При средних и низких содержаниях углерода повышение содержания марганца 0,8 - 1,2 %, как показывают исследования увеличивается прочность чугупа (рис. 155). Дальнейшее увеличение содержания маргаца оказывает ужи отрицательное влияние. Понижение механических свойств наступает в тот момент, когда марганец начинает резко увеличивать количество связанного углерода с образованием структурно-свободных карбидов. Очевидно, что этот момент наступает чем скорее, чем меньше в чугуне углерода п кремния в чем хуже условия графитизации. В высокоуглеродистом же чугуне понижение прочности не наступает даже при 2,4% Мn.

Стрела прогиба и ударная вязкость имеют наивысшее значения при более низком содержании марганца (0,3 - 0,6%), обусловливающем максимум графтизации. Однако при высоком содержании углерода оптимальное содержание марганца повышается (до 2% и выше) вследствие размельчения графита и сравнительно слабом влиянии марганца на степень графитизации  этих условиях. Как видно из рис. 155, увеличение содержания марганца влечет за собой также повышение твердости (тем больше, чем меньше содержание углерода и кремния в чугуне). Однако увеличение содержания марганца до оптимального баланса с самого начала понижает твердость чугуна. При дальнейшем увеличении содержания марганца твердость повышается из-за торможения графитизации и сорбитизации структуры. Особенно сильно повышается твердость при отбеливании чугуна или образовании структуры при достаточно высоком содержании марганца (около 5%), При образовании структуры (10%) твердость чугуна вновь понижается.

Сопоставляя имеющиеся в литературе экспериментальные данные по влиянию серы, можно прийти к заключению, что сама по себе сера, в особенности в виде FeS, оказывает неблагоприятное действие на свойства чугуна, понижая характеристики прочнисти и пластичности (рис. 156). Это объясняется ослаблением границ зерен эвтектикой Fe - FeS и до некоторой степени - образованием дополнительных надрезов включениями MgS. Одноко указанное влияние не проявляется интенсивно.

Поэтому в мягком чугуне вредное влияние серы даже перекрывается повышением колличества связанного углерода, в связи с чем прочность чугуна увеличивается.

 Влияние серы на механические свойства чугуна

Рис. 156. Влияние серы на механические свойства чугуна.

Что касается влияния марганца и серы на однородность механических свойств, то оно выражено в столь слабой форме, что им можно пренебречь. Содержание марганца в ферритом ковком чугуне всегда находится в надлежащем балансе с серой, поэтому влияние этих элементов на механические свойства весьма ограничено. В перлитном ковком чугуне повышение содержания марганца влечет за собой торможение графитизации и увеличение количества перлита в структуре, вследствие чего, как показал И. И. Хорошев, повышаются характеристики прочности и понижается пластичность (удлинение) чугуна (рис. 157).

 Влияние марганца на структуру и механические свойства ковкового чугуна

Рис. 157. Влияние марганца на структуру и механические свойства ковкового чугуна.

Влияние фосфора на механические свойства чугуна

Рис. 158. Влияние фосфора на механические свойства чугуна.

Особенно резко прослеживается    отрицательное влияние фосфора в высокоуглеродистом чугуне и в чугуне в значительным колличеством феррита в структуре. В перлитном же чугуне и при низком содержании углерода вредное влияние фосфора сказывается в меньшей степени, и ударная вязкость чугуна при однократном и многократном приложении нагрузки начинает падать только с 0,3% Р, как и статические свойства (рис. 159). Влияние фосфора на однородность механических свойств так же отрицательно, как и на структуру чугуна. Поэтому с увеличением  содержания фосфора разница в механических свойствах толстых и тонких частей отливок увеличивается. Что касается ковкого чугуна, то повышение содержания фосфора свыше 0,2 - 0,25%  увеличивает его хрупкость.

 Влияние фосфора на ударную вязкость перлитного чугуна

Рис. 159. Влияние фосфора на ударную вязкость перлитного чугуна.

г) Влияние легирующих элементов. Влияние легирующих элементов на механические свойства чугуна весьма разнообразно и зависит от состава металла, его перегрева и условии охлаждения.
Благоприятное влияние легирующих элементов в стали определяется, главным образом, повышением прочности феррита, изменением дисперсности карбидной фазы, увеличением прокаливаемости и устойчивости против отпуска, т. е. возможностью более эффективно использовать термическую обработку с соответствующим повышением пластичности при данной прочности. Однако чугунные отливки обычно не подвергаются термической обработке Кроме того, благодаря высокому содержанию углерода в чугуне упрочнение феррита легирующими элементами не имеет столь большого значения, как в стали.

Распространено мнение, особенно за границей, что применение легирующих элементов в чугуне не имеет большого значения и что обеспечение тех или иных механических свойств чугуна возможно другими способами, например понижением содержания углерода. Эта точка зрения неправильна. Легирование чугуна, как способ повышения механических способов, имеет практическое значение в производственном работе наших литейных и научно обосновывается следующими соображениями.

Формирование вторичной структуры чугуна во время охлаждения в форме подобно тому, что происходит при процессе термической обработки. Поэтому влияние легирующих элементов на однородность чугуна в некотором смысле аналогично их влиянию на прокаливаемость стали и оказывается весьма полезным. Кроме того, легирующие элементы оказывают влияние на механические свойства чугуна путем изменении условии первичной и вторичной кристаллизации.

Изменение физических свойств жидкого раствора, образование тугоплавких соединений определенного строения с соответствующим уровнем поверхностной энергии и изменение сил взаимодействия между атомами раствора являются важными путями воздействия легирующих элементов на первичную кристаллизацию и графитизаиию чугуна. Наиболее интенсивно и благоприятно в этом отношении действуют ванадий, молибден, хром, титан.

 Влияние никеля на механические свойства чугуна

Рис. 160. Влияние никеля на механические свойства чугуна.

Эти элементы размельчают выделения графита и повышают механические свойства чугуна. Еще большее значение имеет воздействие легирующих элементов на вторичную кристаллизацию, в частности па степень дисперсности перлита. В этом отношении действуют благоприятно почти все легирующие элементы вследствие уменьшения температуры пли скорости превращения. При этом карбидообразующие элементы (хром, молибден) оказывают влияние на фирму энтектоидных карбидов.

Оптимальные результаты можно получить при одновременном воздействий на первичную и вторичную кристаллизацию путем е комплексного легирования. По этой причине из двух групп легирующих элементов, образующих преимущественщо карбиды или твердые растворы, первая действует на механические свойства интенсивнее, чем вторая, так как параллельно с сорбитизацией структуры обычно благоприятно изменяет и форму графита. Экспериментальное сопоставление элементов по интенсивности воздействия на прочность чугуна располагает их в следующий ряд: Mo, V, Cr, Ni, Cu.

Наиболее слабым является влияние никеля и меди, что объясняется их графитизирующим действием. Как видно из опытов автора М. П. Симаповского и Г. М. Голуб (рис. 160), никель несколько повышает прочность, пластичность и вязкость чугуна вне зависимости от его эвтектичности. Твердость же чугуна может при этом повышаться или понижаться в зависимости от содержания никеля и характера исходной структуры. В чугуне, склонном к отбеливанию никель, способствуя графитизацди, уменьшает твердость в мягком же чугуне никель, сорбитизируя структуру, увеличивает твердость. Точно так же в зависимости от содержания никеля.

Влияние меди на механические свойства

Рис. 161. Влияние меди на механические свойства.

Влияние меди примерно аналогично влиянию никеля  в модифицированном чугуне больше, чем в обычном. Для повышения эффективности действия этих элементов неодновременное снижение содержания кремния, чтобы не увеличилась степень графитизации (иные механические свойства попытаются в малой степени).

Оптимальное же влияние никеля и меди обнаруживается при присадке их к половинчатому чугуну, когда графитизация в нем вызывается этими элементами.

Влияние хрома на механические свойства чугуна

Рис. 162. Влияние хрома на механические свойства чугуна.

Характерным для большинства легирующих элементов, в особенности для никеля и меди, является то обстоятельство, что они повышают главным образом прочность при растяжении, сжатии и срезе и в меньшей степени - прочность при изгибе, понижая, таким образом, отношение. Значительно  сильнее влияют хром, молибден и ванадии как в отношении повышения прочности чугуна, так и  отношении стрелы прогиба.

При этом, как показали наши исследования, благоприятное влияние хрома сказывается только до 0,5%, благоприятное же влияние молибдена - в пределах до 0,75 - 1,0% (рис. 162, 163 и 164). Все эти элементы особенно эффективно проявляют свое действие при содержании углерода. Как высоки могут быть механические свойства при легировании малоуглеродистого чугуна (после термообработки), показывают следующие данные:

Таблица

Параллельно со статическими характеристиками прочности повышаются, конечно, и усталостные, причем соответствующий коэффциент эквивалентности  обычно не изменяется легирующими элементами, за исключением молибдена, который его несколько повышает. При этом увеличивается также сопротивление усталостному удару. И в этом отношении особенно интенсивно действует молибден (рис. 148), повышение содержания которого до 0,5% значительно увеличивает сопротивление удару при многократном приложении нагрузки. В том же направлении, хотя и менее интенсивно, действует никель и до известного предела (~3%) - медь.

Вместе с тем циклическая вязкость чугуна понижается обычно всеми с легирующими элементами, за исключением меди, которая при небольших напряжениях (15-20% предела прочности) несколько повышается. Это обстоятельство служит одной из причин применения медистого чугуна для коленчатых валов и других подобных деталей.

 Влияние молибдена на механические свойства чугуна

Рис. 163. Влияние молибдена на механические свойства чугуна.

Максимальное использование легирующих элементов и отношении повышения механических свойств возможно только при правильном их сочетании. Это достигается удачной комбинацией элементов: а) благоприятно влияющих на первичную и вторичную кристаллизацию, б) препятствующих и способствующих графитизации; в) образующих растворы с ферритом и цементитом; г) повышающих кристаллизацию и межкристалливую прочность.

Этими принципами удовлетворяет, например, сочетание никеля и хрома, так как никель способствует графитизации и образует твердый раствор с ферритом, упрочняя его, а хром препятствует графитизации, размельчает несколько графит и образует стойкие карбиды.

Влияние ванадия на механические свойства чугуна

Рис. 164. Влияние ванадия на механические свойства чугуна.

При этом оба элемента сорбитизируют структуру. Поэтому никель и хром, действуя совместно, особенно интенсивно повышают механические свойства чугуна. Оптимальное соотношение между ними, как показывают некоторые исследования, зависит от состава чугуна и скорости его охлаждения  и колеблется от 2 :1 до 5 : 1 (табл. 19).

Оптимальное соотношение между никелем и хромом

Таблица 19. Оптимальное соотношение между никелем и хромом.

Медь также повышает эффективность своего действия при сочетании с элементами, препятствующими графитизации например с хромом, молибденом или марганцем, тем более, что при этом обычно, повышается растворимость меди в твердом расторе.

Молибден же, оказывающий сравнительно слабое влияние на графитизацию и образующий твердые растворы и с ферритом и с карбидами, можно комбинировать как с никелем или медью, так и с хромом или марганцем. В литературе обычно рекомендуются следующие отношения: Ni : Mo = 3:1, реже 2 :1 или 1:1; Сr : Мо = 1:1.

Большим преимуществом легированного чугуна, как было указано выше, является его высокая однородность. В этом отношении особенно благоприятно влияние никеля, меди и молибдена, с повышением содержания которых однородность свойств в разных частях отливок увеличивается:

 Таблица 

По этой причине область состава чугуна в диаграмме, соотвестсвует максимальным  свойствам значительно расширяется при легировании никелем и другими элементами. В отношении же остальных элементов можно отметить, что в тех пределах, в каких они встречаются в чугуне, их влияние весьма ограничено. Некоторое применение имеет иногда титан, реже цирконий и алюминий, способствующий графитизации и применяющиеся как дегазаторы и модификаторы. При эгом титан особенно полезен в высокоуглеродном чугуне, где  препятствует образованию пыли, а также и малоуглеродистом чугуне, где он способствует графитизации. Несколько повышают механические свойства также вольфрам, бор, перий.

Влияние меди на механические свойства ферритного ковкого чугуна

Рис 165. Влияние меди на механические свойства ферритного ковкого чугуна

Наоборот, сурьма, отчасти мышьяк, висмут, олово, кобальт и некоторые  другие элементы понижают механические свойства чугуна. Легирующие элементы в ковком чугуне применяются главным образом при производстве чугуна перлитного класса, когда необходимо затормозить в той или иной мере вторую стадию графитизации. В этом случае легирующие элементы, подобно марганцу, повышают прочность, соответственно понижая пластичность чугуна. Например, добавки 0,05 - 0,1% V, 0,3 - 0,7 Мо или 0,1 - 0,2% Сг способствуют получению перлитного ковкого чугуна. При производстве же ферритного ковкого чугуна практическое применение в качестве легирующего элемента получила только медь, способствующая, согласно литературным данным, графитизации, размельчающая выделения графита и несколько повышающая механические свойства (рис. 165).